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The relationships between conserved quantities and invaxiant forms axe discussed 
in the framework of Lagrangian mechanics. As a consequence, it is shown that 
every dynamical symmetry is canonically related to a differential form which 
identifies a family of conserved quantities. Specific examples axe also exhibited. 

1. I N T R O D U C T I O N  

The most commonly used procedures for the identification of constant 
of motion in Lagrangian mechanics depend on the connections between 
conserved quantities and the symmetry properties of the given system (see 
Sarlet et al., 1981a, for a comparat ive survey of most recent results). 

In this paper  we develop an alternative to the aforementioned mode of 
determining first integrals of motion, by relating them to the existence of 
suitably defined invariant forms. More precisely, we modify the proof  of the 
Ho jman-Har l e s ton  theorem recently given by Lutzky (1982) in order to 
show that one can always associate a family of conserved quantities with 
every differential form which is invariant along the trajectories of the given 
Lagrangian system in the extended tangent space. In so doing we also 
provide a constructive way for the explicit generation of the conserved 
quantities. 

By making use of this general conclusion, we will also find a class of 
constants of motion determined by every dynamical symmetry Y via the 
introduction of an invariant 2-form canonically related to Y. After a 
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comparative discussion of some implications of this result, a few specific 
examples are finally exhibited. 

2. PRELIMINARIES 

This section is devoted to a very brief review of some basic results and 
definitions. The reader is referred to Sarlet et al. (1981a) and to Crampin 
(1977) for a more exhaustive treatment of the subject. 

Consider a configuration manifold M and denote by R x TM the 
associated extended tangent space, referred to local coordinates (t, q~,//~)(a 
=1 .... ,n). Suppose that a regular Lagrangian L ( t , q , q )  is given. Then it 
may be shown that the solution of the normalized equations of motion 

d?la/ dt = Aa ( t ,  q, ?1) (1) 

is equivalent to the determination of the integral curves of the field F 
defined by 

F = 3 / 0 t  + i l a a / a q  ~ + A ~ 0 / 0 i l  ~ (2) 

Alternatively, F may be characterized as a solution of the equations 

irdO = 0 (3a) 

i rd t  =1 (3b) 

where the Cartan form 0, which is related to the given Lagrangian L by 

0 = ( L  - i l ~ O L / a q  ~) dt + a L / O f l ~ d q  ~ (4) 

is the pull back of the well-known fundamental form p~ dq ~ - H d t  under the 
Legendre transformation. 

3. CONSERVED QUANTITIES ASSOCIATED WITH 
INVARIANT FORMS 

In the sequel we describe a constructive procedure leading to the 
determination of conserved quantities identified by differential forms with 
vanishing Lie derivative A a along the flow of F. From the mathematical 
viewpoint, our approach is based on a modification of the proof of the 
Hojman-Harleston theorem recently proposed by Lutzky (Hojman et al., 
1981; Lutzky, 1982). 
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Namely, we consider a family of (2n + 1)-forms f~k (k = 0 . . . . .  s) satisfy- 
ing the condition 

- rnk=0 (5) 

Every f~k may be expressed as 

~k  = Pk dg A dql A . . .  A Nqn A N~I1A . . .  A d~t n (6) 

where Pk is a differentiable function. Then it may be shown that the ratio of 
any two coefficients Pk and pj is a constant of motion. Actually, we have 

o= Z~ = a'r(Pk #Pj)= r(Pk/Pj)   (7) 

from which follows F(pk/Pj)  = 0. Accordingly, we conclude that pk/pj is a 
conserved quantity. 

We will now describe simple methods for the generation of invariant 
(2n + 1)-forms. First, consider a 2p-form ~ and a 2q-form X satisfying 

.~rO~ = 0 (8a) 

- rX = 0 (8b) 

In correspondence with every pair of integers k and r such that p k  + qr = n, 

we may construct the (2n + 1) form 

~'~k = d t  A(A ~)k A(A X) r (9) 

for which equation (5) holds identically, in view of (8) and (3b). 
Secondly, suppose that o~ is a (2p -1)- form and fulfills (8a) but is not 

closed. Then we may recall the identity L/'rd~0 = dL~arr to conclude that 
replacing o~ by do: into the expression (9) we obtain an invariant (2n + 1)- 
form. Of course, similar remarks also hold for the form X. 

Thirdly, it is to be noticed that the 2-form dO does satisfy the require- 
ment Z#rd0 = 0, in view of (3a). Therefore, we may always associate 
conserved quantities to a single invariant form o~, provided the canonical 
choice X = dO has been made. In this case the expression of f~k is given by 

 ,=at ^(^, , , )k ^ ( ^  dO)" (lo) 

where r = n -  p k  and k goes from 0 to the maximum integer not greater 
than n / p .  
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We conclude this section by the following remark. In a sense, the above 
results may be considered as a refinement of the connection between 
invariant differential forms and conserved quantities established by the 
following statement: every form ~ satisfying the condition ~ r tO  = 0, where 
f is any differentiable function, may be locally expressed in terms on 2n first 
integrals and of their differentials (Choquet Bruhat, 1968). The main 
advantage of the present formulation consists on the fact that it gives the 
detailed expression of the conserved quantities, without requiring any 
additional integration procedure, provided at least one invariant form is 
known. 

4. CONSERVED QUANTITIES AND DYNAMICAL 
SYMMETRIES 

In this section we introduce invariant 2-forms canonically related to the 
symmetry generators of the given Lagrangian system. We begin by recalling 
a few definitions. 

A vector field Y with coordinate representation 

Y=T(t ,q ,q)O/Ot+K~(t ,q ,q)O/Oq~+,l~( t ,q ,  il)O/Oq~ (11) 

is said to be a dynamical symmetry (DS) iff 

ZavF = [Y, F] = gF (12) 

where g is a differentiable function. It follows from (12) that DSs may be 
regarded as generators of infinitesimal transformations mapping integral 
curves of F into integral curves. If the components T and K ~ do not depend 
on // the vector Y is usually referred to as point symmetry. A Noether 
symmetry is characterized by the property 

~rdO = 0 (13) 

Every Noether symmetry is a DS (Sarlet et al., 1981a). 
To the aim of establishing a correspondence between DSs and con- 

served quantities, let us turn our attention to the 1-form a defined by 

et = iydO (14) 

that has already been introduced (Sarlet et al., 1981b) as a basic tool in the 
construction of the so-called higher-order Noether symmetries. Then the 
following useful identities can be proved by straightforward calculations, 
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taking also into account equations (3) and (12): 

ira = 0 (15a) 

.Wra = 0 (15b) 

dot = ~ r d O  (15c) 

i rda = 0 (15d) 

If a is closed, equation (15c) implies that Y is a Noether symmetry, so 
that it gives rise to a Noether-type conserved quantity (Sarlet et al., 1981a; 
Crampin, 1977). 

Moreover, it follows from equation (15d) that substitution of dO by 
dO + da into the definition (3) of F does not alter the vector field F. 
Looking at this property from a different viewpoint, we find that equations 
(15c) and (15d) imply ird(ZarO ) = 0; if Y is a point symmetry, it follows by 
comparison with (3) that ZPy0 may be regarded as a Cartan form associated 
with the Lagrangian L ' =  Y ( L ) + F ( ~ ) L ,  which gives rise to equivalent 
equations of motion and to a set of conserved quantities (Lutzky, 1979a, 
1982). 

Although in general an arbitrary DS Y does not identify such a Cartan 
form because.~ar0 depends on the differentials d//a and thus cannot assume 
the form (4), nevertheless we may always find a family of conserved 
quantities associated with Y. To this aim, we recall that the form a is 
invariant along the flow of F as a consequence of (15b). Of course, this 
implies that the 2-form da is invariant too. Then, according to the discus- 
sion of the previous section, da = ~q~rdO may be substituted into equation 
(10) giving rise to the conserved quantities Pk/Pj, where the coefficients k 
and j run from 0 to n. 

As a first comment, it is to be remarked explicitly that when the DS Y 
degenerates into a point symmetry the first integrals Pk/Pj reduce to the 
ones already found by Lutzky (1982). 

We also notice that the expression of the first integrals is simply 
obtained by algebraic manipulations of the partial derivatives of L and of 
the components of Y. From this viewpoint, our approach seems to be more 
efficient than those based on the determination of the so-called Noether-type 
conserved quantities (Sarlet et al., 1981a; Lutzky, 1979b) because they 
require the integration of suitably defined partial differential equations. 

5. EXAMPLES 

Aiming at an illustration of our approach to first integrals of motion, 
we consider the equations of motion of the one-dimensional harmonic 
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oscillator modelled by the Lagrangian L = �89 _ �89 The Cartan form 0 is 
given by 

O= - � 8 9  //2 + qZ) dt + //dq (16) 

and a DS Y may be written in the form (Lutzky, 1979b) 

Y = q//O/Ot - q3O/Oq - (2q2//+ i/3) O/O// (17) 

On using (10), (16), and (17) it is found that 

~o = - at ^ dq A dO (18) 

fi, = dt A ZavdO = -2( / /2  + q2) dt A dq A do (19) 

Finally, comparing (18) and (19) with (6), it follows that the first integral 
P~/Oo associated with the DS (17) is twice the well-known energy integral. 

Suppose now that a Lagrangian L = �89 is given, where the 
metric form g~b is either positive definite or of normal hyperbolic type. In 
the latter case, if n = 4, the Lagrangian L models the geodesic motions of 
freely falling particles in the field of general relativity. It has already been 
shown that the Killing tensors of the metric gab may be regarded as 
generators of DSs for the geodesic equation, and families of conserved 
quantities associated with such DSs have also been exhibited (Caviglia, 
1983a, b). A natural question then arises as to the possibility of identifying 
new first integrals of motion by the procedure described in this paper. 

Actually, recalling the expression of the DS generated by a Killing 
t e n s o r  K(av..ap) , namely, 

Y =  K~2...,,oa2 ...(t~pa/Oq ~ - r(K22 ,fi ~ .. .0~,)a/or (20) 

it may be verified by direct calculation that da = s is a linear combina- 
tion of 2-forms of the type dq ~ /x dq b, dt /x dq ~, and dt /x dq ~. Then, after 
substitution into equation (10), it follows that Ok = 0 for k 4: 0. Therefore, 
this example shows that a DS Y does not necessarily identify significant 
conserved quantities, even though ,s is nonvanishing. Moreover, it may 
be remarked that the conserved quantities of the form Pk/Oj do not seem to 
be functionally related, a priori, to the Noether-type constant of motion 
which is known to be associated with the DS (20) (Caviglia, 1983b) because 
the latter constant does not vanish identically when Y is generated by a 
Killing tensor. 
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